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Abstract. The thermodynamic functions for the three-component Potts model on a simple 
cubic lattice are constructed as a low-temperature, high-field series and also as a high- 
temperature, low-field series. Both series predict divergences in the relevant compliances 
in the same temperature range, which may be evidence for a continuous phase transition. 
The critical exponents are tentatively determined, and related to a proposed theory for the 
Potts tricritical point. 

1. Introduction 

The Potts model is a generalization of the standard Ising model in which each site of a 
lattice can be in one of q distinct states (Potts 1952, Mittag and Stephen 1971). Nearest 
neighbour sites interact with an energy to if they are in the same state, and an energy t1  

if they differ. There may also be external fields i l ,  c 2 , .  . . , i, which favour a site being 
in one or another of the states. In what follows we will take to = 1, c l  = 0, and present 
some numerical studies of the q = 3 Potts model on the simple cubic lattice. 

Previous work (Straley and Fisher 1973, to be referred to as SF; Baxter 1973) has 
indicated that the two-dimensional Potts model has a continuous (‘second-order’) 
phase transition and exhibits an unusual type of tricritical point ; in contrast, Landau 
theory indicates a first-order transition should occur (SF). Since this theory presumably 
is correct for large dimensionality, it is certainly of interest to see whether the physically 
relevant case of three dimensions exhibits the tricritical phenomenon. The model is 
harder to analyse in three dimensions than in two because there is no dual symmetry 
(see Mittag and Stephen 1971): we do not know where the phase transition takes place. 
It is not sufficient, of course, to establish the existence of a divergence of some compliance 
as a ‘critical temperature’ is approached from one side ; this could equally well be the 
locus of a continuous transition or the limit of stability of a phase superheated beyond 
a first-order transition. It is necessary to study the state functions both above and 
below the putative critical point, and establish that the series for the compliance predict 
divergences at the same temperature, which must also be the temperature where the 
free energies of the ordered and disordered phases become equal. 

There are several previous discussions of the present problem in the literature. 
(i) Golner (1973) has used the Wilson (1971) recursion integral equations in a study of an 
analogous model-essentially an X Y model with a cubic-order perturbation. He finds 
evidence for a first-order transition for a certain arbitrarily chosen strength of this 
perturbation. Amit and Shcherbakov (1974) have shown that in an t expansion the 
transition is first order for all values of the perturbation. It may be, however, that these 

2173 



2174 J P Straley 

models, which replace the lattice of sites that are in three distinct states by a continuously 
varying two-dimensional field, fail to be faithful representations of the three-dimensional 
Potts model (their conclusions evidently do not apply in two dimensions). (ii) Ditzian 
and Oitmaa (1974) have recently constructed the high-temperature series for the Ising 
S = 1 model with a biquadratic interaction, which becomes the Potts q = 3 model for a 
certain value of the biquadratic parameter. They find that the Potts model case lies 
slightly outside the range of parameter which allows a continuous transition. This 
conclusion, that the Potts model has a first-order transition but with small discontinuities 
at the transition, is a possible alternative interpretation to the studies to be presented 
below. 

The interpretation which will be preferred, however, is that a continuous transition 
occurs near 

with exponents as given in table 1. 

Table 1. Critical exponents 

Function Exponent Value 

C a' - 0.05 k 0.1 
M P 0.25 k 0.05 
x 
x 3  Y 3  

Y' 
2.1 * 0.2 

XI r ;  0.8kO.1 

i 
7 3  

x 
x a  

2. Low-temperature expansion 

The low-temperature expansion was performed as discussed in SF. In the limit of lowest 
temperatures, all sites will be in the same state (say 3); the leading terms in the partition 
function will be those for which only a small density of sites are in other states (1 and 2). 
The expansion parameters are 

x = exp( - 1/T) (1) 

With the aid of the tables of lattice constants given by Domb (1960), this expansion 
of the free energy was carried through terms in which includes all terms through 
fourth order in the variables y ,  and y,. The series may also be characterized as con- 
taining all contributions from clusters in which four sites are in minority states. The 
series is given in appendix 1. This series was used to construct series for the temperature 
derivative of the specific heat, the order parameter, the two susceptibilities, and one 
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further quantity 

all evaluated at zero field. These series are listed in table 2. 

Table 2. Low-temperature series 

2175 

(3) 

F M x XI x 3  

X0 0 1 0 0 0 
X6 2 -3  2 2 2 
XIO 6 - 18 24 24 48 
X I 1  6 - 18 24 0 48 
X I 2  - 14 42 - 56 - 28 -112 
X l 4  30 - 135 270 270 810 
X l 5  60 - 270 540 60 1620 
X I 6  - 108 477 - 930 - 594 - 2694 
X I ’  - 144 648 - 1296 - 144 - 3888 
X18 3724 - 1980 4768 3264 17536 
X I 9  49 8 - 2988 7968 1488 31872 
X Z O  -714 4140 - 10560 - 9048 - 39840 
XZ1 - 2366 14052 - 36992 - 5600 - 145568 
X 2 2  3270 -21690 64812 41892 294540 
X Z 3  7704 - 52920 163440 31008 765360 
XZ4 -8126 55200 - 166184 - 127912 - 744536 

3. High-temperature expansions 

Mittag and Stephen (197 1) have discussed a method for generating high-temperature 
expansions in the absence of external fields. Their method may be generalized to allow 
for the presence of such fields, with the result that the partition function may be written 
as 

where U = (1 - x)/( 1 + 2x) is the high-temperature expansion variable, 

Y l  + Y Z 0 + Y 3 w 2  

Y l  +YZ f L ’ 3  
‘I= 

w = - + + + f i i  ( 5 )  

and R, is a 3 x 3 matrix attached to site r which has the properties that @Q, = a,” = I 
(the unit matrix) so that Tr(RPRt4) = 3 if p - q is a multiple of 3, and vanishes otherwise. 
The first product contains all pairs of sites I and s that are nearest neighbours; the 
second runs over all sites in the lattice. 
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The non-vanishing terms in the product can be represented as directed weak graphs, 
in which each factor of uR,R,‘ becomes a bond directed from s to r .  Unlike some other 
directed-graph systems, the number of bonds coming out of a vertex does not strictly 
have to balance the number coming in:  the property Rj  = I allows three incoming 
bonds to ‘annihilate’, thus breaking the ‘current conservation’. The terms qRd from the 
second product become root points which emit a line (or absorb two). Some typical 
graphs are illustrated in figure 1. 

7%‘ q3v3 

Figure 1. Typical graphs entering into the high-temperature series. (a) A contribution to 
the zero-field free energy (and specific heat). (b)  Another such graph, which exhibits vertices 
of odd order. (c) A contribution to the susceptibility x.  ( d )  A contribution to the susceptibility 
x 3 .  

The free energy function thus calculated may be grouped into terms 

- F / k T  = ~ ~ ~ + f 1 ( u ) + q q * f 2 ( ~ ) + ( q 3 + ~ + 3 ) F 3 ( u ) +  . . . (6) 

eeg = 3 ln ( l+2x) -31n3+ln (y ,+yz+y3) ,  (7) 

where 

and Fl , .FZ, F3 . . . have series expansions in U, which are given in table 3. The lattice 
constants were taken from the tables of Baker et al (1967); construction of the series 
thus reduced to selecting the relevant graphs, determining the possible assignments of 
root points, and establishing the number of ways each group can be directed consistent 
with the vertex rules. Two susceptibilities of the model were considered : x = 1 + Fz(u ) .  
and x3 = $+ f 3 ( u ) .  The former series is just the usual susceptibility - jT(a2F/d i : )  and is 
independent of the ‘direction of i’ (that is, it depends only on + i: + i: - $[ + i2 + i3)’). 

Table 3. High-temperature series. 

0 
0 
0 
6 
0 
44 
36 
402 
688 
1596 

9 2  

6 
30 
150 
762 
3774 
19170 
95298 
482190 
2375322 

9 3  

0 
15 
170 
1389 
10068 
67123 
428250 
2631723 
15800472 
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The latter series is related to the third field derivatives of F and does depend on the 
direction of c ;  it was introduced originally in response to the idea that the relevant 
compliance ought to depend on the sign of c l  (ie the direction of 0. We will see below 
that x and x 3  contain essentially the same information about the tricritical exponents. 

4. Series analysis 

Whatever the order of the transition, its position is defined by the condition that the 
free energies of ordered and disordered phases become equal at the transition tempera- 
ture. The transition will be called continuous if the temperature derivative of the free 
energy is continuous at this temperature. Since both high- and low-temperature series 
for the free energy have been derived, we should try to use this definition. The question 
was approached by assuming that the series (x d / a ~ ) ~ F ( x )  and ( u  d/ i?~)~F,~ , ,~(u)  (which both 
are the product of regular functions and the temperature derivative of the specific heat) 
have a singularity of index - 1, approximately. Pade approximants to these series were 
found which exhibited simple poles at x = 0.5856 (for [15,9]) and U = 0.1977 (for [7,3]), 
respectively (which correspond to similar temperatures). These approximants were 
integrated numerically to construct F ( x )  and Fsing(u). The results are shown in figure 2.  
The free energies of the two phases are nearly the same in the interval 1.8 < T < 1.9, 
and the internal energies are the same for T = 1.88. 

'I I 

Figure 2. The free energy and internal energy near the tricritical point. The high- and low- 
temperature series have been used to construct approximations to U and F. The high- 
temperature (HT) and low-temperature (LT) approximations to F agree in the interval 
1.8 < T < 1.9 (inset), and the two approximations for U take on the same value near 
T 1.88. 

This construction can only be regarded as a consistency check : the assumption that 
the free energy has singular derivatives at a unique temperature virtually contains the 
assumption that the transition is continuous ; and the contrary assumption that the free 
energy is regular would surely have led to the conclusion that the transition is first order. 
(This criticism is also relevant to  the similar construction performed in SF. In its defence, 
we will point out thatthe Pad6 approximants to the low-temperature series for (x 1 3 / d x ) ~ F  
nearly all give simple poles near the indicated IT; ,  and that its success is not guaranteed 
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by the assumption introduced-whereas showing a discontinuity in U is consistent with 
regular F is trivial). In any case, the high-temperature series was too short to be reliable, and 
finagling with the approximations to &/aT will change the agreement for better or worse. 

The conjecture that there is a continuous phase transition near IT; = 1437 implies 
that all compliances should also be divergent there. This possibility was studied by 
constructing Pade approximants to the logarithmic derivatives of the relevant series, 
as was done in SF. The results are shown in figure 3, in which the residues at the pole of 
the approximants (=predicted critical exponents) are plotted against the position of the 
pole. The latter have been translated into the temperature scale in order to allow direct 
comparison of the high- and low-temperature series results. 

The low-temperature series have more terms (but not more information). The Pade 
analysis of the low-temperature series thus gives more guesses (corresponding to the 
larger number of possible partitions L = M < N )  and can be interpreted more reliably. 
It should be mentioned that many of the approximants to the low-temperature x 3  pre- 
dicted no transition or predicted a transition well off figure 3 ;  the series for low-tem- 
perature &/aT and M suffered mildly from the same disease. The high-temperature 
series are regular enough that ratio test analysis is possible ; the corresponding pre- 
dictions have also been entered in figure 3 .  

I - 
- 
. 

. 

.I 

. 

I 
I .7 1.8 1.9 2.0 

T 
Figure 3. Predicted exponents and tricritical temperatures. Pade approximants have been 
constructed to the logarithmic derivative of each series of interest ; here are plotted pole 
residue against pole position, which may be interpreted as predicted T,. The symbol (CE)  
represents the results of a ratio analysis of the high-temperature series. The symbol ( x ) 
represents the values chosen for table 1. 

5. Relationship to scaling theory 

Inspection of table 1 reveals an unusual feature : the exponents above the transition are 
different from those below. A similar anomaly is present in the studies of the two- 
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dimensional Potts model, where y’ = 1.5-1.7 (according to the analysis of SF ; the 
Rushbrooke inequality forces the upper value to be taken), and y = 1.4k0.1 (Kim and 
Joseph 1974, Straley, unpublished). These relationships are anomalous in that they are 
contrary to experience with the Ising model and other systems; as we shall see below, 
they are also in conflict with the predictions of the Griffiths (1973) scaling theory. 

The geometry of the Potts tricritical point was discussed in SF. The symmetry of the 
model requires that it be the intersection of a line of first-order transitions (at 
il  = i2 = i3, for T < IT;)  and three critical lines which lie symmetrically in the (il, i2, C 3 )  
space above T, (see figure 2 of SF). If we define the variables t ,  io, [, and 8 by 

then the Griffiths theory, adapted to the present geometry, becomes the assumption 
that the singular part of the free energy has the scaling behaviour 

F,,,,(t, (, 1’ sin2@) = L-2facFsing(/l‘%, Ai, AzA1i2 sin2@). (9) 

The variable io plays no role in the phase transition. The exponents discussed above, 
which Griffiths calls the subsidiary tricritical exponents, are related to the exponents of 
the scaling function by 

2-c( = 2-a’ = (2-a,)/4t, 

so that the low- and high-temperature exponents are the same. 
This theory also predicts that at least close to the tricritical point the critical lines are 

described by t = ci#l’, where c is a constant, and 8 = x/3, n, or 5x13. Attempts to modify 
the theory by introducing a new exponent to characterize the approach of the critical 
lines to the zero field line do not alter the exponent relationships, except in the case of 
rather special assumptions about the structure of the scaling function-and even then 
the changes are in the wrong direction to explain table 1. 

The scaling theory thus seems to imply that the anomalously low susceptibility 
exponent on the high-temperature side is an artifact of the analysis. Such an artifact 
might result from interference between the tricritical singularity and the Ising critical 
lines, which might not be well resolved by a short series. The point is that for finite C, 
the second i derivative of FEing has a weak divergence at a temperature slightly above the 
tricritical point which will appear in the temperature series with an exponent 
(where a, is the Ising specific heat exponent). This weak divergence may have been 
confused with the stronger true tricritical susceptibility divergence in the analysis. 

6. Summary 

The foregoing analysis indicates that the high- and low-temperature series have diver- 
gences in the same temperature range ; and furthermore shows that there is a temperature 
in this range where the free energy and internal energy bridge continuously from low- to 
high-temperature behaviour. This may be evidence for a continuous phase transition, 
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although a weak first-order phase transition is also possible. The resolution of these tests 
is unfortunately rather poor. 

The critical exponents that have been calculated do  not show the equality between 
high and low temperatures (for a given compliance) which is predicted by scaling theory. 
This, coupled with the anomalously low values of the high-temperature exponents, and 
consideration of the nature of the high-temperature, zero-field approach to the tricritical 
point, may indicate that the high-temperature series cannot be trusted. 
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Appendix. Low-temperature free energy series 

The expansion of F in powers of x, y1 and yz is given below. The notation y" means 
Y; + YZ , and Y y "  is yTyl+ y;y';. 

- F/T = yx6 + yZ(3x' O - 3 ) ~ ' ~ )  + y y ( 3 ~ '  - 3*x1 ') + y3(l 5 ~ ' ~  - 3 6 ~ ' ~  + 2 1 i ~ ' ~ )  

+ yZy(3O~' - 2 1 ~ '  - 7 2 ~ '  ' + 6 4 ~ ' ~ )  + y4(3x1 + 8 3 ~  l 8  - 3 2 8 ) ~ ~ '  

+405x2' - 1 6 2 ; ~ ~ ~ )  + Y ~ Y ( ~ ~ x ' ~  + 1 8 6 ~ ' ~  - 1 1 7 ~ ~ '  - 8 0 8 ~ "  + 5 6 7 ~ ~ ~  

+ 8 1 0 ~ ~ ~  - 6 5 1 ~ ~ ~ ) +  Y ' Y ~ ( ~ x ' ~  + 6 3 ~ "  +4@x2' - 4 2 3 ~ ~ '  - 9~~~ 

+ 8 1 0 ~ ' ~  - 4 8 8 $ ~ ~ ~ ) + ~ ~ ( 4 8 ~ ~ ~ + 4 2 6 ~ ~ ~ - 2 8 0 4 ~ ~ ~ +  . . .) 
+y4y(48x2'+84x22+1254x23-917xz4+ . . .) 
+ y 3 y z ( 1 4 4 ~ z 2 + 9 7 8 ~ 2 3  +357xZ4+ . . .)+y6(18x22+486x24+ . . .) 
+ 7 2 ~ ' y x ~ ~  + 36y4yzx24 + 8y7xz4 +y8x24 + . . . . 
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